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Abstract: We here present a spherically symmetric exact solution of the general
relativistic field equations by using Tewari [1] solution as a seed solution. The
solution is having positive finite central pressure and positive finite central density.
The ratio of pressure and density is less than one and casualty condition is obeyed
at the centre. Further, the outmarch of pressure, density and pressure-density ratio,
and the ratio of sound speed to light is monotonically decreasing. The central red
shift and surface red shift are positive and monotonically decreasing. Further by
assuming the suitable surface density, we have constructed a compact star model
with all degree of suitability.
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1. Introduction:
Due to condensation and thereafter contraction of a massive gas cloud (mass

less than the solar mass) a quasi static equilibrium state is reached when a resulting
thermal radiation pressure together with normal hydrodynamic pressure balances
the gravitational binding energy which ends up into a compact stellar object. Ein-
stein’s field equation was obtained by Schwarzschild for the interior of this static
compact stellar object. The well behaved solution of Einstein’s field equation can
give us an idea about the interiors of massive fluid ball. The first ever two exact
solution of Einstein field equation for a compact object in static equilibrium was
obtained by Schwarzschild [2]. The first solution corresponds to the geometry of the
space-time exterior to a static prefect fluid ball, while the other solution describes
the interior geometry of a fluid sphere of constant energy-density. Tolman [3] has
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obtained five different types of exact solutions for static cases. The III solution
corresponds to the constant density solution obtained earlier by Schwarzschild [2].
The V and VI solutions correspond to infinite density and infinite pressure at the
centre, hence not considered physically viable. Thus only the IV and VII solutions
of Tolman are of physical relevance. Despite the non linear character of Einsteins
field equations, various exact solutions for static and spherically symmetric metric
are available in the related literature.

The search for the exact solutions is of continuous interest to researcher. Buchdahl
[4] proposed a famous bound on the mass radius ratio of relativistic fluid spheres
which is an important contribution in order to study the stability of the fluid
spheres. Delgaty-Lake [5] studied all the then existing solutions and established
that Adler [6], Heintzmann [7], Finch and Skea [8], etc. do not satisfy all the well
behaved conditions and also pointed out that only nine solutions are well behaved;
out of which seven in curvature coordinates (Tolman [3], Patvardhav and Vaidya [9],
Mehra [10], Kuchowicz [11], Matese and Whitman [12], Durgapals two solutions [13]
and only two solutions (Nariai [14], Goldman [15]) in isotropic coordinates. Ivanov
[16], Neeraj Pant [17], Maurya and Gupta [18], Pant et al. ([19],[20]) studied the
existing well behaved solutions of Einstein field equations in isotropic coordinates.
Recently we have found some exact solutions of Einsteins field equations given by
Tewari [21], Tewari and Charan ([22]-[24]).

In this paper we present another new solution in spherically symmetric coordinates
which is well behaved. Keeping in view of generality of solution due to Tewari [1] we
present a special solution of the same and its detailed study, in order to construct
a realistic model of compact star. In our present study the paper consists of seven
sections. In section 2 Einstein’s field equations in isotropic coordinates are given.
Section 3 consists of boundary conditions for well behaved solutions. New class of
solution of Einstein’s field equations in isotropic coordinates is given in section 4.
Section 5 stipulates the properties of this new class of solution of Einstein’s field
equations. In section 6 the matching conditions of interior metric of the perfect
fluid with the exterior metric are given. Finally, some concluding remarks have
been made in section 7.

2. Einstein’s Field Equation in Isotropic coordinates
The Einstein’s field equations of general relativity are

Rµν −
1

2
Rgµν = −8πG

c4
Tµν (1)

where Tµν , the energy momentum tensor for a perfect fluid ball is defined as

Tµν = (ρc2 + p)uµuν − pgµν (2)
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where ρ and p are the proper density and isotropic pressure of the fluid, uµ time-like
four-velocity vector and gµν metric tensor of space-time.

The interior space-time metric for spherically symmetric fluid distribution is given
by

ds2 = −B2{dr2 + r2(dθ2 + sin2θdφ2)}+ A2dt2 (3)

where A and B are functions of r only.

In view of the metric (3) and energy momentum tensor (2), the field equation (1)
gives

8πG

c4
p =

1

B2

(B′2
B2

+
2B′

rB
+

2A′B′

AB
+

2A′

rA

)
(4)

8πG

c4
p =

1

B2

(B′′
B
− B′2

B2
+
B′

rB
+
A′′

A
+

2A′

rA

)
(5)

8πG

c2
ρ = − 1

B2

(2B′′

B
− B′2

B2
+

4B′

rB

)
(6)

The gravitational redshift of massive spherically symmetric ball is

1 + Z = g
1
2
00 (7)

which gives central (Z0) and surface (ZΣ) gravitational redshifts

Z0 =
c

A
− 1 (8)

and

ZΣ =
(

1 +
rB′

B

)−1

− 1 (9)

3. Boundary conditions for well behaved Solution
For well behaved nature of the solution in isotropic coordinates, the following

conditions should be satisfied (Bonnor-Vickers [25]):

(i) The solution should be free from singularities i.e. central pressure, central
density, should be positive and finite. For this A and B must be positive or ρr=0 > 0
and pr=0 > 0.

(ii) The solution should have positive and monotonically decreasing expressions for
pressure and density with the increase of r. The solution should have positive value
of ratio of pressure-density and less than 1 (weak energy condition) and less than
(strong energy condition) throughout within the star, monotonically decreasing as
well. (Pant and Negi [26]).
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(iii) The casualty condition i.e. velocity of sound should be less than that of light
throughout the model. The velocity of sound should be decreasing towards the
surface and increasing with the increase of density. In this context it is worth
mentioning that the equation of state at ultra-high distribution has the property
that the sound speed is decreasing outwards. (Canuto and Lodenquai [27]).

(iv) p
ρ
< dp

dρ
, everywhere within the ball. For realistic matter γ > 1. (Pant and

Maurya [28] )

(v) The red shift z should be positive, finite and monotonically decreasing in nature
with the increase of r.

Under these conditions, we have to assume the one of the gravitational potential
component in such a way that the field equation (1) can be integrated and solution
should be well behaved.

4. New class of well behaved Solution
In view of eq. (4) and (5), the condition of pressure isotropy reduces to a

differential equation in A and B

A′′

A
+
B′′

B
=
(2B′′

B
+

1

r

)(A′
A

+
B′

B

)
(10)

A new parametric class of solutions of (10) is obtained by Tewari [1] as follows

A = D1(1 + c1r
2)

2−n
l+1

+1 +D2(1 + C1r
2)

n
l+1 (11)

B = C2(1 + C1r
2)

1
l+1 (12)

where n, l, C1, C2, D1 and D2 are constants and

n =
1

2

{
(l + 3)± (l2 + 10l + 17)

1
2

}
(13)

where n is real if l ≥ −5 + 2
√

2 or l ≤ −5− 2
√

2.

In view of eq.(4)-(6) and eq.(11) and (12), we get expressions for pressure and
density given as

8πG

c4
p = =

4C1

(l + 1)2C2
2(1 + C1r2)

2 l+1+2
[(l+1)(n+1)+

{
(l+1)(n+1)+2n+1

}
C1r

2

+
(l + 1)(2−2n

l+1
+ 1)D1(1 + C1r

2)
2−2n
l+1

+1
{

(l + 1) + (l + 3)C1r
2
}

D2 +D1(1 + C1r2)
2−2n
l+1

+1
] (14)



A Well Behaved Exact Solution for Spherically Symmetric ... 81

8πG

c2
ρ =

4C1

(l + 1)2C2
2

{
− 3(l + 1)− (l + 2)C1r

2
}

(1 + C1r2)
2

l+1
+2

(15)

In order to make a new realistic model we assume n = −11/9 and using (11)-

(15), the metric coefficients and explicit expressions for the energy density,isotropic
pressure of star are given by

A = D1(1 + c1r
2)

90
119 +D2(1 + C1r

2)
11
119 (16)

B = C2(1 + C1r
2)

−9
119 (17)

8πG
c4
p = 4C1

(1147041C2
2 (1+C1r2)

110
l19

[238 + 121C1r
2 + 79D1(1+C1r2)

79
119 {119+l01C1r2}

D2+D1(1+C1r2)
79
l19

] (18)

8πG

c2
ρ =

4C1(357 + 110C1r
2)

1147041C2
2(1 + C1r2)

110
l19

(19)

5. Properties of new solution
The solution should be free from singularities i.e. central pressure, central

density, should be positive and finite. For this A and B must be positive or D1 +
D2 ≥ 0 and C2 ≥ 0.

The central pressure and density of star are given by

8πG

c4
p0 =

16C1

9639C2
2

{81D1 + 2D2

D1 +D2

}
(20)

8πG

c2
ρ0 =

4C1

357C2
2

(21)

The central value of pressure and density is positive definite if 81D1 +2D2 > 0 and

C1 > 0. For the values of D1 and D2 such that
4

27

{81D1 + 2D2

D1 +D2

}
≤ 1, the central

value p0

C2ρ0
≤ 1.

In view of equation (18) the rate of fall of pressure with radial distance from the
center p′ is given by

8πG

c4
p′ =

8rC2
1(−1309 + 121C1r

2)

15166431C2
2(1 + C1r2)

229
119

+
632rD1C

2
1

136497879C2
2

{12109(1+C1r2)(D2+D1(1+C1r2)
79
119 )−(119+101C1r2)

{
(79D1(1+C1r2)

79
119 +31(D1+D2)

}
(1+C1r2)

150
119

{
D2+D1(1+C1r2)

79
119

}2

}
(22)
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p′′0 = − 8C2
1

1147041C2
2

{810D2
1 − 5728D1D2 + 99D2

2

(D1 +D2)2

}
(23)

gives negative value of (p′′)0 for all values of D1 and D2 which satisfy boundary
conditions. Hence pressure is maximum at the centre and monotonically decreasing.

In view of equation (19) the rate of fall of density with radial distance from the
center ρ′ is given by

8πG

c2
ρ′ =

8rC2
1(−238 + 9C1r

2)

127449C2
2(1 + C1r2)

229
l19

(24)

ρ′′0 = − 880C2
1

127449C2
2

(25)

which is always negative for all values of C1 and C2. Thus density is maximum at
center and is monotonically decreasing.

Square of adiabatic sound speed at the center is given by

1

c2
(
dp

dρ
)0 =

0.0462(D2
1 + 1.9956D1D2 +D2

2)

(D1 +D2)2
(26)

The casuality condition is obeyed at the center for all values of constant satisfying
the boundary conditions.

Further it is mentioned here that the boundary of the super dense star is established
only when D1 +D2 > 0 and C2 > 0, C1 > 0.

6. Matching Conditions of Boundary
The solutions so obtained are to be matched over the boundary with Schwarzschild
exterior solution

ds2
+ = −

(
1− 2GM

c2R

)−1

dR2 −R2(dθ2 + sin2 θdφ2) +
(

1− 2GM

c2R

)
c2dt2 (27)

where M is the mass of the ball determined by external observer and R is the radial
coordinate of the exterior region.

The usual boundary conditions are that the first and second fundamental forms
are continuous over the boundary r = rΣ or equivalently R = RΣ. Therefore

[
D2(1 + C1r

2
Σ)

90
119 +D1(1 + C1r

2
Σ)

11
119

]2

= c2(1− 2Sp) (28)

RΣ = rΣC2(1 + C1r
2
Σ)

−9
119 (29)
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(B′
B

+
1

r

)
rΣ = (1− 2Sp)

1
2 (30)

A′

A
rΣ = Sp(1− 2Sp)

−1
2 (31)

where Sp = GM
c2RΣ

.

In view of the above boundary conditions we get the values of the arbitrary con-
stants in terms of Schwarzschild parameter Sp .

C1 =
119[1− (1− 2Sp)

1
2 ]

18
(32)

C2 = RΣ

[ 1

rΣ

+
119[1− (1− 2Sp)

1
2 ]

18

]
rΣ (33)

D1 =
11c[1− (1− 2Sp)

1
2 ](1− 2Sp)

1
2 (1 + C1r

2
Σ)

−90
119 − 9Sp(1− 2Sp)(1 + C1r

2
Σ)

30
119

[1− (1− 2Sp)
1
2 ][11 + 90(1 + C1r2

Σ)
1

119 ]
(34)

D2 =
90c[1− (1− 2Sp)

1
2 ](1− 2Sp)

1
2 (1 + C1r

2
Σ)

48
119 + 9Sp(1− 2Sp)(1 + C1r

2
Σ)

109
119

[1− (1− 2Sp)
1
2 ][11 + 90(1 + C1r2

Σ)
59
119 ]

(35)
The central redshift is

Z0 = (1− 2Sp)
−1
2 − 1 (36)

The surface redshift is

ZΣ =
18R2

Σ[1− (1− 2Sp)
1
2 ]

18 + 101R2
Σ[1− (1− 2Sp)

1
2 ]

(37)

7. Conclusion
We have given a new class of solution for spherically symmetric perfect fluid

ball. We have obtained a variety of classes of exact solutions by giving different
values to the parameter n in general solution. A new model corresponding to
n = −11/9 has been studied in detail. It has been observed that the physical
parameters pressure, density, and redshift are positive at the centre and within
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the limit of realistic state equation and monotonically decreasing and the causality
condition is obeyed throughout the fluid ball. Thus, the solution is well behaved for
all values of Schwarzschild parameter Sp within the perfect fluid ball. Our solution
is useful to construct the models of compact star like Strange star family, Neutron
star and many more.
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